3.1.83 \(\int \frac {\sqrt {a+b x+c x^2}}{x^3 (d-f x^2)} \, dx\) [83]

3.1.83.1 Optimal result
3.1.83.2 Mathematica [C] (verified)
3.1.83.3 Rubi [A] (verified)
3.1.83.4 Maple [A] (verified)
3.1.83.5 Fricas [B] (verification not implemented)
3.1.83.6 Sympy [F]
3.1.83.7 Maxima [F]
3.1.83.8 Giac [F(-2)]
3.1.83.9 Mupad [F(-1)]

3.1.83.1 Optimal result

Integrand size = 28, antiderivative size = 353 \[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=-\frac {(2 a+b x) \sqrt {a+b x+c x^2}}{4 a d x^2}+\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac {\sqrt {a} f \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d^2}-\frac {\sqrt {f} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2}+\frac {\sqrt {f} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2} \]

output
1/8*(-4*a*c+b^2)*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^(3/2 
)/d-f*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))*a^(1/2)/d^2-1/4*( 
b*x+2*a)*(c*x^2+b*x+a)^(1/2)/a/d/x^2-1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2 
)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2 
))^(1/2))*f^(1/2)*(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2)/d^2+1/2*arctanh(1/2*(b 
*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a 
*f+b*d^(1/2)*f^(1/2))^(1/2))*f^(1/2)*(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)/d^2
 
3.1.83.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.60 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=\frac {-\frac {d (2 a+b x) \sqrt {a+x (b+c x)}}{a x^2}+\frac {\left (b^2 d-4 a (c d+2 a f)\right ) \text {arctanh}\left (\frac {-\sqrt {c} x+\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{a^{3/2}}-2 f \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b^2 d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a^2 f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 b \sqrt {c} d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+a f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{4 d^2} \]

input
Integrate[Sqrt[a + b*x + c*x^2]/(x^3*(d - f*x^2)),x]
 
output
(-((d*(2*a + b*x)*Sqrt[a + x*(b + c*x)])/(a*x^2)) + ((b^2*d - 4*a*(c*d + 2 
*a*f))*ArcTanh[(-(Sqrt[c]*x) + Sqrt[a + x*(b + c*x)])/Sqrt[a]])/a^(3/2) - 
2*f*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f 
*#1^4 & , (b^2*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*c*d*Lo 
g[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a^2*f*Log[-(Sqrt[c]*x) + Sq 
rt[a + b*x + c*x^2] - #1] - 2*b*Sqrt[c]*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x 
+ c*x^2] - #1]*#1 + c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^ 
2 + a*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d 
- 2*c*d*#1 - a*f*#1 + f*#1^3) & ])/(4*d^2)
 
3.1.83.3 Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {f^2 x \sqrt {a+b x+c x^2}}{d^2 \left (d-f x^2\right )}+\frac {f \sqrt {a+b x+c x^2}}{d^2 x}+\frac {\sqrt {a+b x+c x^2}}{d x^3}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{3/2} d}-\frac {\sqrt {a} f \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{d^2}-\frac {\sqrt {f} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d^2}+\frac {\sqrt {f} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d^2}-\frac {(2 a+b x) \sqrt {a+b x+c x^2}}{4 a d x^2}\)

input
Int[Sqrt[a + b*x + c*x^2]/(x^3*(d - f*x^2)),x]
 
output
-1/4*((2*a + b*x)*Sqrt[a + b*x + c*x^2])/(a*d*x^2) + ((b^2 - 4*a*c)*ArcTan 
h[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(8*a^(3/2)*d) - (Sqrt[a] 
*f*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/d^2 - (Sqrt[f]* 
Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2* 
c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + 
b*x + c*x^2])])/(2*d^2) + (Sqrt[f]*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Arc 
Tanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + 
 b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^2)
 

3.1.83.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.1.83.4 Maple [A] (verified)

Time = 0.96 (sec) , antiderivative size = 479, normalized size of antiderivative = 1.36

method result size
risch \(-\frac {\left (b x +2 a \right ) \sqrt {c \,x^{2}+b x +a}}{4 a d \,x^{2}}-\frac {-\frac {\left (-8 a^{2} f -4 a c d +b^{2} d \right ) \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d \sqrt {a}}-\frac {4 a \left (b \sqrt {d f}+f a +c d \right ) \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{d \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}+\frac {4 a \left (b \sqrt {d f}-f a -c d \right ) \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{d \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}}{8 a d}\) \(479\)
default \(\text {Expression too large to display}\) \(1143\)

input
int((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x,method=_RETURNVERBOSE)
 
output
-1/4*(b*x+2*a)*(c*x^2+b*x+a)^(1/2)/a/d/x^2-1/8/a/d*(-(-8*a^2*f-4*a*c*d+b^2 
*d)/d/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-4*a*(b*(d*f)^( 
1/2)+f*a+c*d)/d/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a 
+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c* 
d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/ 
f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))+4*a*(b*(d*f)^(1/2) 
-f*a-c*d)/d/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f 
*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2 
)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d* 
f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f)))
 
3.1.83.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 738 vs. \(2 (275) = 550\).

Time = 81.78 (sec) , antiderivative size = 1485, normalized size of antiderivative = 4.21 \[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=\text {Too large to display} \]

input
integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="fricas")
 
output
[1/16*(4*a^2*d^2*x^2*sqrt((d^4*sqrt(b^2*f^3/d^7) + c*d*f + a*f^2)/d^4)*log 
((2*sqrt(c*x^2 + b*x + a)*d^5*sqrt(b^2*f^3/d^7)*sqrt((d^4*sqrt(b^2*f^3/d^7 
) + c*d*f + a*f^2)/d^4) + 2*b*c*f^2*x + b^2*f^2 + (b*d^3*f*x + 2*a*d^3*f)* 
sqrt(b^2*f^3/d^7))/x) - 4*a^2*d^2*x^2*sqrt((d^4*sqrt(b^2*f^3/d^7) + c*d*f 
+ a*f^2)/d^4)*log(-(2*sqrt(c*x^2 + b*x + a)*d^5*sqrt(b^2*f^3/d^7)*sqrt((d^ 
4*sqrt(b^2*f^3/d^7) + c*d*f + a*f^2)/d^4) - 2*b*c*f^2*x - b^2*f^2 - (b*d^3 
*f*x + 2*a*d^3*f)*sqrt(b^2*f^3/d^7))/x) - 4*a^2*d^2*x^2*sqrt(-(d^4*sqrt(b^ 
2*f^3/d^7) - c*d*f - a*f^2)/d^4)*log((2*sqrt(c*x^2 + b*x + a)*d^5*sqrt(b^2 
*f^3/d^7)*sqrt(-(d^4*sqrt(b^2*f^3/d^7) - c*d*f - a*f^2)/d^4) + 2*b*c*f^2*x 
 + b^2*f^2 - (b*d^3*f*x + 2*a*d^3*f)*sqrt(b^2*f^3/d^7))/x) + 4*a^2*d^2*x^2 
*sqrt(-(d^4*sqrt(b^2*f^3/d^7) - c*d*f - a*f^2)/d^4)*log(-(2*sqrt(c*x^2 + b 
*x + a)*d^5*sqrt(b^2*f^3/d^7)*sqrt(-(d^4*sqrt(b^2*f^3/d^7) - c*d*f - a*f^2 
)/d^4) - 2*b*c*f^2*x - b^2*f^2 + (b*d^3*f*x + 2*a*d^3*f)*sqrt(b^2*f^3/d^7) 
)/x) + (8*a^2*f - (b^2 - 4*a*c)*d)*sqrt(a)*x^2*log(-(8*a*b*x + (b^2 + 4*a* 
c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2) - 4*(a* 
b*d*x + 2*a^2*d)*sqrt(c*x^2 + b*x + a))/(a^2*d^2*x^2), 1/8*(2*a^2*d^2*x^2* 
sqrt((d^4*sqrt(b^2*f^3/d^7) + c*d*f + a*f^2)/d^4)*log((2*sqrt(c*x^2 + b*x 
+ a)*d^5*sqrt(b^2*f^3/d^7)*sqrt((d^4*sqrt(b^2*f^3/d^7) + c*d*f + a*f^2)/d^ 
4) + 2*b*c*f^2*x + b^2*f^2 + (b*d^3*f*x + 2*a*d^3*f)*sqrt(b^2*f^3/d^7))/x) 
 - 2*a^2*d^2*x^2*sqrt((d^4*sqrt(b^2*f^3/d^7) + c*d*f + a*f^2)/d^4)*log(...
 
3.1.83.6 Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=- \int \frac {\sqrt {a + b x + c x^{2}}}{- d x^{3} + f x^{5}}\, dx \]

input
integrate((c*x**2+b*x+a)**(1/2)/x**3/(-f*x**2+d),x)
 
output
-Integral(sqrt(a + b*x + c*x**2)/(-d*x**3 + f*x**5), x)
 
3.1.83.7 Maxima [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=\int { -\frac {\sqrt {c x^{2} + b x + a}}{{\left (f x^{2} - d\right )} x^{3}} \,d x } \]

input
integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="maxima")
 
output
-integrate(sqrt(c*x^2 + b*x + a)/((f*x^2 - d)*x^3), x)
 
3.1.83.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=\text {Exception raised: AttributeError} \]

input
integrate((c*x^2+b*x+a)^(1/2)/x^3/(-f*x^2+d),x, algorithm="giac")
 
output
Exception raised: AttributeError >> type
 
3.1.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (d-f x^2\right )} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{x^3\,\left (d-f\,x^2\right )} \,d x \]

input
int((a + b*x + c*x^2)^(1/2)/(x^3*(d - f*x^2)),x)
 
output
int((a + b*x + c*x^2)^(1/2)/(x^3*(d - f*x^2)), x)